
DECEMBER, 1965 REPORT ESL-R-253
M.I.T. PROJECT DSR 9948
NASA Research Grunt NsG-496 (Part)

I

I

CADD: ON-LINE SYNTHESIS OF L O G I C CIRCUITS

Micbuei L. Dertouros
Paul J. Suiitos, Jc

GPO PRICE si

- - ’ i-
Hard ’copy (HC) . i i

Microfiche (M F) , / -2

Y-

- /

ff 663 July 66

* .

' December, 1965 Report ESL-R- 253 CODV 33

CADD: ON-LINE SYNTHESIS O F LOGIC CIRCUITS

by
M. L. Dertouzos and P. J . Santos, J r .

The preparation and publication of this repor t , including the r e search
on which it i s based, was sponsored under a grant to the Electronic
S y s t e m s Labor ator y , Ma s sac hu se tt s Institute of Technology , Pr oje c t
DSR No. 9948. This grant is being administered as par t of the
National Aeronautics and Space Administration Re search Grant NO.
NsG-496 (Part). This report i s published for information purposes
only and doe s not repre sent recommendations or conclusions of the
sponsoring agency. Reproduction i n whole or in part i s permitted
for any purpose of the United States Government.

Electronic Systems Laboratory
Department of Electr ical Engineering
Massachusetts Institute of Technology

Cambridge, Mas sachu se tt s 0 2 13 9

I V

I A ABSTRACT

The cent ra l a im of logical design is the synthesis of any given switch-
ing function in t e r m s of given se t s of e lementary building blocks, for
the optimization of some performance index in the presence of con-
s t ra in ts , Although the present "state of the art" yields algorithmic
methods for the solution of cer ta in specific instances of the problem
(such a s minimization of building-block inputs Jth a two-level, AND-
OR realization), no fully algorithmic method exis ts for the solution of
the more general problem,

The sys tem descr ibed in this paper gives solutions to the general
problem by use of an online process (using Pro jec t MAC at M. I , T .),
where the machine accom-plishes these computational tasks which can
be algorithmically specified, and where the use r provides those de-
c is ions which he i s better qualified to make.
of the sys tem i s based on a se t of heurist ic procedures which guarantee
convergence of the process and give better resu l t s than conventional,
sub-optimal brute-force techniques, The machine thus behaves in an
"intelligent" fashion using successive local-optimization procedures
and does not depend on impract ical (and usually impossible) ex-
haustive searches through all possible solutions. When coupled with
the flexible human decision process , these procedures give resu l t s of
pract ical significance.

The machine portion

i ii

.
i

CHAPTER I

A.

B.

C .

CHAPTER I1

A.

3.

C.

D.

CHAPTER 111

A.

B.

C .

C;HAP."l'LK I V

A.

B.

CONTENTS

INTRODUCTION Page
DESCRIPTION OF THE PROBLEM

METHOD O F SOLUTION

1. General Concepts
2. CADD-1 and CADD-2

BASIS FOR EVALUATION O F RESULTS

DESCRIPTION O F THE SYNTHESIS METHOD

0 UTLIN E

PRELIMINARY PROCESSING

DECOMPOSITION

CONVERGENCE AND SPECIAL CASES

IMPLEMENTATION

PROGRAMMING CONSIDERATIONS

GENERAL PROGRAM STRUCTURE

1. CADD-1
2 . CADD-2

PROGRAM OPERATION

1. CADD-1

a. Input Phase
b. Decomposition Phase
c . Support Phase

2 . CADD-2

a. Input Phase
b. Decomposition Phase
c . Support Phase

CADD- 1 1

1. Limitations
2. Comparison with other Methods
3. Effect of Human Operator

CADD-2

7

7

7

9
15

23

23

25

25
28

29

29

29
31
36

37

37
38
39
A 1 T l

41

41
43
43

44

V

CONTENTS (Cont,)

c

APPENDIX A DATA STRUCTURES page 47

APPENDIX B DETAILED FLOW CHARTS 53

APPENDIX C SAMPLE RUN FOR CADD-1 7 1

APPENDIX D SAMPLE RUN FOR CADD-2 77

BIBLIOGRAPHY 8 3

4

LIST O F FIGURES

Page

Fig. 1. 1 Illustration of Recursive Decomposition P r o c e s s 3

Fig. 2. 1 Outline of Synthesis Method

F ig . 2 .2 Il lustration of Conventions

Fig. 2. 3 Typical Decomposition Step

F ig . 2 . 4 Sample Decomposition

Using Three-Input NOR Gates

Using Folding Techniques

8

11

14

20

Fig . 3. 1 General P r o g r a m Structure for CADD- 1 24

Fig. 3 .2 General P r o g r a m Structure for CADD-2 28

Fig . A l . 1 Structures Used i n L ib ra ry Generation 48

Fig . A l . 2 Building Block Directory and L ib ra ry 49

Fig. A l . 3 Common Structures Used During Decomposition 50

Fig . A l . 4 Typical T r e e Element 51

F ig . A l . 5 CADD-2 Data Structures 52

v ii

. . r
-2 -

be used in this case.

prevent the use of the s tandard minimization algorithms.

synthesis limitations a r e present when there exist no s tandard synthesis

method that can handle a given s e t of logic gates.

a c a s e is synthesis res t r ic ted to EXCLUSIVE-OR and AND gates ,

even when these gates have no fan-in rest r ic t ions.

This is a n instance where fan-in limitations

Moreover ,

An example of such

B, METHOD OF SOLUTION

1, General Concepts

The method of solution described i n this repor t is basical ly heurist ic;

a fully algorithmic and rigorous treatment of this problem does not

exis t present ly and i ts future development seems unlikely in view of

our cu r ren t knowledge.

the use of a digital computer on an in te rac t ive basis with the human

designer .

heur i s t ic s t ruc tu re is a dependence on local, ra ther than global,

optimization algori thms.

t e r m "heurist ic", the following description of sys tem operation is

given.

11, Section D.

Fundamental to this heurist ic approach i s

Another aspect of this approach which is a bas i s for its

To il lustrate and clarify the often abused

A discussion of convergence of the method is given in Chapter

The designer , located at a remote terminal of a digital computer,

communicates with i t typically via a keyboard, and perhaps through a

graphical display.

interact ion, and provides the necessary calculating power. The

designer provides the program with the necessary data about the

Boolean function to be synthesized and the s e t of blocks which a r e to

be used i n the real izat ion of that function.

tion then ca r r i e s out a r ecu r s ive decomposition which operates f i r s t

on the given function and then on each subfunction into which the

given function is decomposed.

each non-decomposed subfunction becomes either an input var iable

o r a constant. A s imple example of such a decomposition process

is shown i n F i g . 1. 1 where the allowable gates a r e two-input ANDs

and ORs.
the subfigures a r e numbered in increasing o rde r of complexity of

decomposition. Note the multiple use of function BD. This example

A computer program governs the man-machine

The man-machine combina-

Decomposition is thus continued until

Each s tep of the process corresponds to a subfigure, and

1

c CHAPTER I

INTRODUCTION

A. DESCRIPTION O F THE PROBLEM

The synthesis of a given switching function using logical building

blocks (gates) is a task which has traditionally been approached with

emphasis on some optimality cr i ter ion. At present, there exis t

methods of synthesis such as two-level AND-OR, NOR-NOR, and

NAND-NAND, which guarantee a n optimal realization of any switching

function. Common features of such methods a r e :

a) a res t r ic t ion on the type and method of interconnection of
building blocks and

b) a lack of res t r ic t ion on the number of inputs to these blocks.

F o r example, two-level AND-OR synthesis of a rb i t r a ry (four-variable)

switching functions may require the use of AND gates with two to four

inputs and a n OR gate with two to eight inputs.

It is a mat te r of definition that any s e t of building blocks which is

can be used exclusively in the synthesis of any
>:C

"logically complete"

given switching function. It is desirable , then, to have a general

method which synthesizes any given Boolean function using any given

s e t of logically complete blocks. Such a genera l synthesis approach

is the objective s e t forth in this report .

Before outlining the foregoing generalized method, i t s eems

appropriate to give a c l ea re r and m o r e specific picture of the

limitations which generally confront the use r of conventional optimal

techniques. In the case of AND-OR synthesis, for example, a

perfectly valid, logically complete se t might be a two-input AND gate

and a two-input OR gate.

requires either o r both blocks to have m o r e than two inputs, i t cannot

Since the well-known optimal technique

>;< ~

At no point in the method to be discussed is the logical completeness
of a given s e t questioned. The proof of completeness is , i n general ,
a difficult task and has therefore been a s sumed to be a l ready shown.

- 1-

c.

-4-
,

is given to i l lustrate principles of operation and does not represent

a GADD-generated solution.

As a general rule , the system of programs which implement

the method and control the interaction

make a decision which is inconsistent with the cur ren t s ta te of the

decomposition, both by checking each decision and by limiting his

choices.

contains only building blocks belonging to the originally specified

complete se t , a r ranged i n some a rb i t r a ry t r ee s t ruc ture and

realizing the given function.

do not allow the operator to

The final resu l t of the synthesis is a block diagram which

A completely mechanized heurist ic approach to a problem of

this magnitude would involve a large amount of programming to

account f o r a l l possible c i rcumstances, and would be, moreover ,

inflexible to change. By using an interactive sys tem, however, all

or pa r t of the decision mechanism can be delegated to the human

designer. Thus, programming time and the amount of computer

memory occupied by the programs are reduced. Fu r the rmore , the

interactive sys tem is flexible and permits a n eas i e r development of

heurist ics to meet the many unexpected situations which inevitably

aris e .

Because of the foregoing, the sys tem s t a r t ed out i n a highly ex-

perimental f o r m , with most of the decision-making burden assigned

to the human. Gradually, however, modifications were introduced

to balance the apportionrbient of decision-making and computing.

modifications were derived from the observation of common situations

and patterns which were amenable to algorithmic solution.

The

Global optimization usually involves a n unmanageable growth of

data space, and severe ly l imits the s i ze of the problem which can be

attacked. Local optimization, on the other hand, although i t general ly

gives results which a r e not globally optimal, has the advantage of a

reasonably bounded data space and i s capable of handling l a rge r

problems with a n attendant increase in computer t ime only.

This report concerns two basic p rograms r e f e r r e d to a s CADD-1

and CADD-2 which a r e the original and modified vers ions of the method
under discus s ion.

t

- 5-
4

2. CADD-1 and CADD-2

CADD-1 re fers to the system completed in June, 1965. This

system i s f r ee of program e r r o r s and is capable of attacking the type

of problem described i n the foregoing. It is subject, however, to

several deficiencies which can be separated into three a reas .

The f i r s t of these deficiencies concerns the inclusion of the *
function l ibrary

etc ,

little to the synthesis process and used a large amount of program

space.

(4. v.) and its attendant need for folding, rotating,

In retrospect, i t was found that the function l ib rary contributed

The other two deficiencies are on the implementation level and

concern the speed and amount of man-machine interaction.

uses a typewriter for a l l interaction, and hence a large amount of

rea l (human) time is consumed in the typlng of decomposition tables

and block diagrams for the information of the designer.

CADD-1 is a highly experimental system, a large amount of interaction

replaces unknown algorithmic tasks.

eventually made much of this interaction unnecessary.

CADD- 1

Also, since

Experience with CADD- 1

The foregoing deficiencies make CADD-1 a rather slow system

in te rms of rea l time (six hours of interaction may be required for

a difficult six-variable function), even though computer t ime usage

i s sma l l (about two minutes for the same six-variable function).

To overcome these shortcomings of CADD-1, a new system,

CADD-2, was created.

the lunction i ibrary an6 ics asswLicrkd L L i a C L i i i C i - j - , i i ~ i z g z grz.;=%=z?

display rather than a typewriter to speed up the rate of interaction,

and eliminating certain a reas of interaction. The graphical display

used in CADD-2 i s the Electronic Systems Laboratory Display Console,

and the digital computer used for both CADD-1 and CADD-2 i s the

Pro jec t MAC time sharing system using a modified IBM 7094 processor .

Major modifications consisted of removing

C. BASIS FOR EVALUATION O F RESULTS

Because the generalized synthesis procedure deals generally

with problems to which there are no other known methods of solution

*
A l i b ra ry composed of functions generated by permuting and negating
inputs of all the available building biocks.

-6 -

except for so-called "brute-forcef1 methods (to be discussed), it

becomes difficult to judge the "goodness" of a particular c i rcui t

realization developed by CADD-1 o r CADD-2. In a sense, i t is

"good" that even a single solution has been achieved.

how is one to judge the "goodness" of a cer ta in block-diagram con-

figuration, which was purposely generated in that form by the use r

for reasons of his own'? Such a configuration may be bet ter than

another configuration which perhaps contains fewer blocks but fails

to satisfy c r i te r ia of grea te r importance to the user .

Fur thermore ,

Since there exist conflicting o r unknown measures of "goodness,"

the only comparison used here is based on the relative number of

building blocks used by the generalized versus the (a pr ior i known)

'brute - f o r c el1 technique s .
The "brute-force" technique discussed in the foregoing consists

of the following steps

1. Since the given se t of building blocks is logically complete,
use i t to generate {AND, OR}, {NOR} o r {NAND}. That
is, construct each member of this new s e t f rom members
of the given s e t and f rom the constants 1 and 0.

2. C a r r y out the classical two-level minimal AND-OR, OR-AND,
NOR-NOR, o r NAND-NAND synthesis. *l

3 . Substitute members of the classical realization by members
of the given s e t i n accordance with s t ep 1, above.
that s tep 1 may be invoked seve ra l t imes, such as, f o r
example, when a par t icular type of block required by the
classical realization contains a different number of inputs
than a block already generated. Such a case would be the
building of a four-input AND gate f rom two-input AND gates.

Observe

4. Retain the realization generated f rom s tep 3 above which
uses the leas t number of building blocks belonging to given
sets .
obtained using generalized CADD techniques.

This realization will be then compared to realizations

It may be t rue that this comparison is somewhat a r b i t r a r y and

Nevertheless, i t is the only known method that can be unfair.

consistently used, since i t is independent of the type of logic blocks

to be used and of the function to be synthesized.

*
Superscripts re fer to numbered i tems i n the Bibliography.

CHAPTER I1

DESCRIPTION OF THE SYNTHESIS METHOD

A, OUTLINE

A flow diagram which outlines the generalized synthesis method

Operation can be considered i n three phases: i s given i n Fig, 2 , 1,

Phase I, where the program accepts as input the function to be

synthesized and the building blocks to be used, and, in the case of

CADD- 1, generates f rom each building block a "library" of functions

to be used in Phase 111; Phase 11, where the program provides the

mechanism for associating one of the given building blocks with the

cur ren t function to be realized;

is provided for properly decomposing the cur ren t function, under

the rest r ic t ion of the given building blocks, into subfunctions. These

subfunctions a r e either constants, variables, negated variables,

building-block functions of variables f rom the l ib rary generated in

Phase I (CADD- 1 only), functions already realized, the fan-out of

which has not yet been exceeded (CADD-2 only), or functions which

in turn have to be decomposed later.

9
and Phase 11, where the mechanism

Phase I i s described more fully i n Section B of this chapter,

Phases I1 and I11 i n Section C , and particular aspects of Phase I11 i n

.Section D.

B. PRELIMINARY PROCESSING

n- -2 I I I U I --- c u LA-:--;-- "'6'""'"Ee " _ ^ _ -___I_ = p t l T a l y n t h e s i s , a cer ta in amount of

processing of the given s e t of building blocks must take place. This

preprocessing consists of the creation of subelements in the building

block directory and, in the case of CADD-1, the generation of a l ib rary

of functions, for each building block, to be used i n a manner descr ibed

i n Section C. F o r each given block, the preprocessing operation is

as follows:

7

*
The cur ren t function may be the resul t of successive decompositions
of the original function, or the original function itself.

-7 -

-8-

t

H

f

6

- 9 -

Create a new subelement i n the block directory which
contains a l l the pertinent information about the block, such
a s i t s truth table, the number of inputs, i t s nam-e, and a
usable specification of i ts function. This function specifica-
tion takes the form of two lists which indicate for what
combinations of input values the block generates ZEROS and
ONES, respectively, To generate these l i s t s , f i r s t roughly
l i s t a l l possible input combinations which yield, say, a
ZERO, and then refine this l i s t in a manner s imi la r to the
Quine-McCluskey2 procedure. Thus, any element of the
l i s t which i s independent of a particular input, c a r r i e s a
DON'T CARE entry under that input.

I .

,
1.

>:<
2 .

.L -I-

3 .

:$
4,

Detect a l l the se t s of inputs about which the function i s
symmetr ic , since the function i s invariant under permuta-
tions of these inputs.
of the two (ze ro or one) function specification l i s t s and
considering a l l possible interchanges of inputs within the
l i s t s in order to see if,, indeed, the function remains in-
var iant under that particular interchange of inputs. Clearly,
inputs which a r e symmetr ic to the same input a r e symmetr ic
to each other.

This is done by choosing the sma l l e r

Generate a l l unique permutations of the inputs by using the
detected symmetr ies to eliminate hidden duplicates.

Initialize a l ib rary l i s t and append to i t i tems consisting of
a truth-table specification of a block function and a n indica-
tion of the permutations and negations of the input var iables
which generate this function. F o r each permutation, and
for each possible combination of negations, an ite-m i s added
to the l i s t i f i t s t ruth table does not duplicate that of an i tem
already in the l ist . When the creat ion of the l i b ra ry l i s t i s
finished, i t contains a l l possible functions which can be
generated by permuting and negating the inputs to the given
block.

C. DECOMPOSITION

Class ica l synthesis methods generally build up the circui t real iza-

tion by successive combinations of simple functions s tar t ing f rom the

input var iables until the des i red output function i s produced.

synthesis method presented he re does the opposite, i . e . , i t works

f r o m the output function back toward the input var iab les , decomposing

each function into severa l t t s imp le r t t functions which may, i n turn,

have immediate realizations o r may need to be fur ther decomposed.

The

4c
Sections 2 through 4 apply to CADD- 1 only.

. r
-10-

Before proceeding with a detailed description of the process ,

two conventions used for representing an n-variable Boolean function

F(xl; , , , x) will be explained.

i n a 2 -element a r r a y the values of F i n an ordering which c o r r e s -

ponds to the binary natural code formed by x l , . . . x
example, the value F (W , X , Y, Z) = 1 at W = 0, X = 1, Y = 0, Z = 1

is entered in the sixth element of the a r r a y since 0101 i s the sixth

binary number counting zero.

a r e s imilar ly entered as shown in the example of Fig. 2.2a.

second convention involves two se t s of n-element a r r a y s , corresponding

to the minimum sum of products and to the minimum product of

sums.

by entering ONES (ZEROS) for those l i t e r ' 1s of the product (sum)

which a re present and entering !>ONIT CARES for the remaining

l i t e ra l s ,

vention as shown i n Fig. 2.2b.

The first convention consists of entering n n

Thus, for n'

The remaining values of F(W,X, Y, Z)

The

Each of these products (sums) i s placed i n a n n-element a r r a y

F o r example, a three-input OR is represented in this con-

Returning to the description of decomposition, le t us a s sume that

we a r e given a function (using the f i r s t convention descr ibed above)

which is to be realized. It is des i red that this function be rea l ized

a t the output of one of the given building blocks.

chosen, in a manner to be described. The problem i s , then, to find

a s e t of subi:inctions associated one-to-one with the inputs of the block,

and satisfying the following condition

pertinent input var iables , these subfunctions give a s e t of values which

when applied to the block produce the c o r r e c t output value.

subfunction is dependent on the s a m e var iables as the original function

or some subset of those var iables . F o r example, suppose the function

to be realized has a ZERO value for the fourth element and the block

realizing this function is a two-inpat OR. Then subfunctions F and

G, corresponding to inputs 1 and 2. respectively, mus t both have

a ZERO value f o r their fourth Alement, s ince a n OR genera tes a ZERO

only if both inputs a r e ZERO. The method f o r solving this problem

and assigning subfunctions to inputs is , f o r the mos t par t , a l so

descr ibed below. although cer ta in aspec ts of the p rocess , such a s

convergence and the encounter of "dead ends", a r e discussed i n l a t e r

s ec tions .

F i r s t , a block is

io r each combination of the

Each

c
2 zh

‘ 3 N,

w s
c
Z
0
n

8

0
Z

II

w L

N O - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

> o o - - 0 0 - - 0 0 - - o o - -

x

. I

-12-

In selecting a block to real ize a given function, the number of

ONES and ZEROS of the function a r e first obtained, and the DON'T

CAREs ignored.

determine which is the "bestf1 block to use under the c i rcumstances .

The operator contains four sections, each of which is given a weight

(variable throughout the course of the p rocess) commensurate with

the relative importance of that section.

wi thr

Then an operator is applied to each block to

The sections a r e concerned

(a) The number of constants (ZEROs and ONEs) appearing
i n the Building block function specification.

(b) The number of DON'T CAREs appearing in the s a m e
specification.

(c) The number of possible ways to generate each of the
des i red output values.

(d) The number of block inputs.

The operator uses the information about the number of ONEs o r

ZEROs

o r ZERO genera tors of the building block function specification,

respectively. Operations per formed by Sections (a) and (b) a r e

normalized i n o rde r to achieve independence f rom !:ections (c) and

(d) above, The reason for making the weight adjustable is because

the meaning of "best block" changes f rom one point i n the process to

another. F o r example, given two blocks which a r e identical in

"goodness" except that one has m o r e inputs than the other , the one

with more inputs i s "better" at the beginning of the decomposition

because it tends to simplify the problem m o r e rapidly; whereas ,

toward the end of the decomposition, the one with fewer inputs may

be "better".

of the function to weigh the significance of the ONE gene ra to r s

Once a block has been chosen; i t is added to the existing s t ruc tu re

of the block diagram and a decomposition table for that block is c rea ted .
The table is a rectangular a r r a y which has a column for each input

to the block, a column for the function to be decomposed, and a row

for each element of the function a r r ay . The total number of rows is

where n is the number of arguments of the function. It may be

possible to f i l l i n cer ta in en t r ies in the decomposition table immediately.

F o r example, if the function has a DON'T CARE i n a ce r t a in row, then

Zn,

- 13- . .
all other entries of this row will be DON'T CAREs Moreover, i f

the type of block chosen is such that it can generate, say, ZEROs,

i n only one or a few ways s o that certain inputs must have cer ta in

values and no others , then every row in which the function has a

ZERO must be filled in according to these input res t r ic t ions ,

2 , 3a shows how initial restrictions a re fi l led in ,

how a l l rows for which F i s ONE contains ZEROs under a l l sub-

functions

ZERO

Figure

Note, i n par t icular ,

0
since a NOR can generate a ONE only i f all inputs a r e

The next s tep in the process is to t r y to choose a n immediate
:'<

realization for one af the subfunctions, usually the one corresponding

to the f i r s t input, F1.

available immediate realizations is made, rejecting a l l those which

a r e incompatible with having a ZERO a s their fourth and seventh

element

fo r instance, the variable X does not f i t because i t had a ONE i n i t s

seventh element, whereas the variable y f i ts . since i t contains

ZEROs i n i t s fourth and seventh elements. F r o m a l l thDse realizations

which fi t , the "best" one is chosen and used to fill i n the particular

column (subfunction) under consideration

depends upon the type of block being used,

the subfunction which row by row yields the highest

with the function is "best", since i t generates the grea tes t number of

DON'T CAREs in succeeding subfunctions, i . e . , i f the output of a NOR

In the example D f Fig. 2. 3a a s e a r c h of

Those rea>izat ions which a r e compatible a r e sa id to "fit";

The "best" subfunction

In the case of a NOR gate
-8, .I>

cor r e la ti on'" 'I.

ZEZ2, t h e n 2 CNF: nn any of i t s inputs allows the other inputs to

In the case of an AND gate, correlat ion ra ther be a rb i t r a r i l y assigned.

than anticorrelation is the "goodness" cr i ter ion, for the s a m e reason,

i . e . , the maximum generation of DON'T CAREs.

c r i t e r ion has been chosen fo r a given type of building block the s a m e

c r i t e r ion can be used thraughout the synthesis.

Once a goodness

In F ig , 2 .3b, F1 has been filled i n with the var iable 7 (reca l l

that both variables and their negations a r e available), since i t was

found lo be the 'Ibest" subfunction. Variable P is attached to the f i r s t
-

::: ~

A constant, var iable , negated variable, l ib rary function JCADD- 1
only). o r a previously real ized function (CADD-2 only).

Anticorrelation is the negative of t he Lui-i-e:atioz.
.;. ,:

-14 -

X Y Z Fo F1 F2 F3
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1 0 0 0
1 0 0 0

1 1 0 1 0 0 0
1 1 1 0

1 0 1 9 9 9 9

X Y Z Fo F1 F2 F3

0 0 0 0 1 9 9
0 0 1 0 1 9 9
0 1 0 0 0 1 9

1 0 0 0 1 4 9
1 0 1 9 9 + 9

0 1 1 1 0 0 0

1 1 0 1 0 0 0
1 1 1 0 0 0

F2@;

3 3 z

X Y Z Fo F1 F2 F3

0 0 0 0 1 9 9
0 0 1 0 1 9 9

1 0 0 0 1 9 9
1 0 1 9 9 9 9

0 1 0 0 0
0 1 1 1 0 0 0

1 1 0 1 0 0 0
1 1 1 0 0

X Y Z Fo F1 F q F3

0 0 0 0 1 9 9
0 0 1 0 1 9 9
0 1 0 0 0 1 9

1 0 0 0 1 9 9
1 0 1 9 9 9 9

0 1 1 1 0 0 0

1 1 0 1 0 0 0
1 1 1 0 0 0 1

NOTE:
9 = DON'T CARE

Fig. 2.3 Typical Decomposition Step Using Three-Input NOR Gates

-15-

input of the NOR in the block diagram, and further entries i n the

table may now be filled in. In the present example, Fig. 2 . 3b shows

how DON‘T CARES a r e generated in the remainder of the first,

second, and fifth rows due to the ONES of the f i r s t subfunction.

The above procedures a r e repeated for each of the remaining

inputs to the block and each time a subfunction is chosen and fi l led

in, i t further r e s t r i c t s the behavior of the remaining inputs. A point

may be reached sooner o r later when no immediate realization “fi ts”.

In this case . remaining blank entries a r e filled in a manner left to

the discretion of the operator, but subject to some of the points to be

mentioned in Section D. The resulting subfunction i s then t reated a s

a new function to be decomposed. Upon successfully completing this

fur ther decomposition, the process moves on to the next input until

a l l inputs have been filled, a t which point the original function has

been successfully decomposed and attention i s then returned to the

preceding level of decomposition. In the example of Fig. 2. 3, all

inputs have immediate realizations. the NOR of X , yp and Z for

the second input (Fig. 2 . 3c) and the NOR of x, T 9 and z f o r the

third input (Fig. 2.3d): s o that no fur ther work is necessary and the

given function has been decomposed.

To summar ize , the decomposition process i s accomplished as

follows :

1. Take the given function to be synthesized and apply to i t the
block selection and decomposition techniques i l lustrated
above.

Apply these techniques to a l l generated subfunctions which
cannot be immediately realizcd and i te ra te until a f inal
realization of the original function is reached.

2,

The path followed by the process in performing Steps 1 and 2

above will form a t ree- l ike s t ructure which is one-to-one with the

block diagram representing the current s ta te of the synthesis The

p rocess terminates when a l l the inpxts of the f i r s t block i n the t r ee

(block d iagram) have been filled and realized.

D. CONVERGENCE AND SPECIAL CASES

‘0 far we have not discussed convergence, i. e . , the termination

of the enxire process i n a si-icces;fu! rez!kat i~n. The question of

-1 6-

whether convergence can be achieved or not wi.11 be called the con-

vergence problem.

given subfunction is not immediately realizable, but mus t be fur ther

decomposed. In the following subfunction G is said to be a con-

vergen subfunction of function F i f ei ther

The convergence problem a r i s e s whenever a

A. min (ONEs (F), ZEROs (F)) > min (ONEs (G), ZEROs (G))

o r

B. DON'T CAREs (G) > DON'T CARES (F)

If for every generated subfunction one of these convergence c r i t e r i a

is obeyed, then repeated decomposition will yield final functions which

are either a n input variable, a constant, o r a DON'T CARE.

F o r any a rb i t r a ry s e t of logic gates , i t is not cer ta in that this con-

On the other hand, it is possible vergence c r i te r ion will be satisfied.

to show that convergence can always be satisfied for cer ta in given sets

of building blocks. F o r example, proof of convergence when the given

se t consists of n-input NOR gates follows :

PROOF: Let the function to be real ized have N, ZEROs, N1

ONEs, and N2 DON'T CAREs. Then each subfunction which is not

immediately realizable contains exactly No1 = N1 ZEROs (due to the

ONEs of the function), N1' < No ONEs and N2' > N2 DON'T CAREs,

which a s su res convergence since min (N N1') and

N2' > N2, The reason that N1' is l e s s than N (and therefore by

mutual exclusion N I > N2) i s a s follows:

N1)? min (N ' 0' 0 '

0

2

a. Assume that in the wors t case , no immediately realizable
function fi ts any of the n inputs. Then ass ign a single ONE
in each row where the function i s ZERO, distributing these
ONEs a s evenly a s possible among the inputs. * It follows
that

N l l - C [N?/n] t 1 and NZ' = N2 t N,! - N1'

thereby confirming the asser t ion .

b. Assume one o r more immediately real izable subfunctions
f i t some of the inputs.
tain a t l eas t one ONE (otherwise they would be t r ivial and
serve no purpose in the decomposition), and s ince this ONE

Since these subfunctions mus t con-

4
This resul ts i n a t mos t [.] t 1 ONES pe r input, where [XI

means the integer pa r t of X .

-17-
. .

must occupy a row which corresponds to a ZERO in the
function, a l l other unfilled inputs a r e assigned DON'T
CARES i n that row and hence N > N2 t 1 and N l l C 2 - -
N , j - 1 for the remaining subfunctions, thus confirming

the assertion.

Dually, use of the s e t of n-input NAND gates renders the method

convergent, Likewise, convergence has been shown when the given

set consists of minority gates. In addition to the above s e t of gates,

it is expected that convergence can be shown for a number of

logically complete se t s .

to show convergence for other se t s of gates, since p r imary attention

was directed on the development of the method.

No special effort was spent i n attempting

In explaining the generalized synthesis method of Section C, cer ta in

special situations were not discussed in order that the basic ideas be

made a s c lear a s possible.

into cases requiring "folding", permutation of var iables , and "bztcking

up", the f i r s t two being present i n CADD- 1, and l a s t being present

i n both.

of the "backing up" i ssue , applied mainly to CADD-1.

In the example of Fig. 2 . 3 the function to be real ized depends on

These special situations can be grouped

The remaining discussion in this section, with the exception

three variables. Fur thermore , the only building block in the function

l i b ra ry has three inputs.

a r e of equal length,

should be taken i f the length of the function vector of the function to be

real ized were unequal to that of any o r all of the immediately realizable

functions ar is ing f rom the building blocks i n tne iurlc,Liuii l i k ~ z r y . The

answer to this question depends on the relevant c i rcumstances outlined

below I

Hence, both function vectors (l inear a r r a y s)

The natural question a r i s e s as to what policy

1. The number of var iables , on which the subfunction to be realized
depends, is less than the number of inputs of - any of the blocks
i n the l ibrary. Consequently, the function vector of each block
is longer than the vector of the function to be realized. There-
fo re , of a l l available immediately realizable subfunctions, only
var iables and constants can be used.

2 . The number of var iables , n, on which the function to be realized
depends, is grea te r than o r equal to the number of inputs m
of some o r all of the building blocks.
m = n a r e t reated as before, that is they a r e tested for "fitting"
and "goodness" along with the var iables , and constants . Blocks

Those blocks for which

. . - 18-

f o r which m < n can bg used, provided that their function
vectors a r e ffunfoldedll to accommodate the grea te r length
of the subfunction vector o r , conversely, the subfunction i s
lffoldedll* to accommodate the lesser length of the building
block function vector. Those blocks for which m > n a r e
not used a t this decomposition stage.

A subfunction vector can be "folded" about i t s highest-order

variable i f the f i r s t half of the vector i s consistent with the second

half i n the following sense:

1. Let 2p be the length of subfunction F, and p the length of
folded subfunc tion F' .

2 . For i = 0 to i = p - 1:

a) If the i th element of F, Fi,
an unfilled entry, Fit = Fpfi

b) If F. = 0 and Fp+i = 1, then folding i s impossible,

and the procedure stops, otherwise element F = 0

c) If element Fi = 1

is a DON'T CARE or

1

i
and F = 0 folding is impossible P+ i

and the procedure stops, Otherwise element F I = 1. i

Conversely, "unfolding" a subfunction consists of doubling the

length of i ts function vector by repeating i t .

When decomposing a function of n variables, and attempting to

check the fit and "goodness" of an immediately realizable subfunction

derived from a block having m < n inputs, the subfunction is repeatedly

l'unfolded'' n-m times and is then treated as any other immediately

realizable subfunction.

the subfunction independent of the highest-order n-m variables.

Clearly the other subfunctions assume the burden of this dependence.

Moreover, the extent to which a given, partially specified subfunction

can be folded places a lower bound on the number of inputs a usable

block may have. That is , if the maximum folded length of the function

vector of a subfunction is grea te r than that of a block, then that block,
when unfolded, will not fit, since otherwise that subfunction could have

been further folded.

The effect of the unfolding process is to make

*
The process of folding and unfolding i s discussed in the next paragraph.

- 19-

Since folding, i n general, implied independence from one o r more

variables all non-immediately realizable subfunctions, before being

in turn decomposed, a r e folded as far as their completely specified

entr ies permit ,

allows the subfunction to be dependent on as few variables as possible

and therefore makes the function easier to decompose.

these non-immediately realizable subfunctions can be folded by a

judicious assignment of blank entries i n the decomposition table.

Since folding a subfunction satisfies convergence (a function can only

be folded a finite number of t imes), a good heurist ic technique con-

sists of using up as many restrictions a s possible, under one sub-

function, provided they do not interfere with the folding of that sub-

function. The reason for this approach is that other subfunctions may

then receive the benefits of DON'T CARES in the rows where r e s t r i c -

tions have been satisfied. The next mos t desirable alternative to

finding an immediate realization for a subfunction i s the ability to fold

i t , particularly i f some restrictions can be absorbed a t the same time.

Several examples of folding appear i n Fig. 2 .4 with Fig, 2 . 4 a pertain-

ing to CADD- 1 only and with Figs . 2.4b and 2 . 4 ~ pertaining to both

CADD- 1 and CADD-2.

This technique, which also applied to CADD-2,

Many t imes

::<

Folding was explained in terms of the highest-order variable since

it is eas i e r to see physically than folding about some other variable.

Clearly, i t can be extended to folding about any variable through an

available mechanism,

a t each level of the decomposition i s a rb i t ra ry , and will affect the local

The number of permutations that a r e t r ied

optimality of the solution, ra ther than the actual finding of a solution

It should be noted that for a given n-variable function and an m-input

block a t mos t (n-m)! permutations of the variables (start ing with the

highest-order one) need be t r ied since the least significant m-variables ,

corresponding to the m-inputs of the block, have already been ex-

haustively permuted i n the function l ibrary.

p rocess a r e shown in Fig, 2.4.

Examples of this permuting

*<
Restrictions a r e any situations which l imit decomposition operations
such as folding, fitting, etc.

-20-

7 0

I!
LL 0 - - 0 0 - 0 -+ 0 - 0 - 0 08- .- c

LL

h
> o - o - o - o - o - o - o - o ~

x o o - - o o - - o o - - o o ~ ~ Y

0

~ ~ + * o o o - - o - o o o o - ~

~ - - * o o o o o o o o o o o o +

0 0 +. - - - 0 0 - 0 - 0 0.- 0 8-

h

N O O - - O O - - O O - - O O - - R
Y

> o o o o - - - - o o o o - ~ ~ ~

t 1

h > o o - - o o - - o o - - o o ~ ~ 0

Y

X o o o o - - - - o o o o ~ - ~ ~

~ o o o o o o o o - - - - ~ - ~ ~
w"
Gb

P -
-D
0

LL

J

- 2 1 -

Finally, a feature i s provided for "backing-up", i . e . , undoing

a cer ta in amount of previous work. When first writing the program to

implement the method, the ability to "back-up" was considered neces-

s a r y because it could not be a priori shown that the synthesis would

always converge.

NAND, and minority gates, thus making use of the backing-up feature

unnecessary, the feature can be nevertheless used in striving to improve

the optimality of the resulting configuration. Thus, f rom any given

decomposition stage, the backing-up feature can be used to modify

an ea r l i e r decomposition stage SG as t o obtain better r e su l t s ,

Although convergence i s guaranteed for NOR,

CHAPTER I11

IMPLEMENTATION

1 A. PROGRAMMING CONSIDERATIONS

The reason for implementing the method described in Chapter I1

was to tes t the validity of the method, ra ther than the relative effici-

ency with which it could be ca r r i ed out.

r e strictions on the amount of programming effort .
3 was decided to use the AED-0

the program, with selected short subroutines written in F A P

Assembly Language).

language which has additional facilities (in the form of systems of

special subroutines) for computer-aided de sign, such as easi ly-

programmable free -format input-output and dynamic storage allo-

cation.

FORTRAN or MAD (other symbolic compiler languages), and AED-0

was chosen instead of the la t ter two because of its superior facil i t ies.

N o claim i s made a s t o the efficiency of the AED programs, d S w e v e r ,

since the pr ime consideration w a s to achieve a working program.

Cer ta in purely logical (bit-manipulating) tasks were written as sub-

routines in F A P , a f a r more natural language to use in those cases .

Time limitations imposed

Consequently, it

programming language for the bulk of
4 (IBM 7094

AED-0 i s an ALGOL-like symbolic programming

AED-0 programs can be written with the same ease as

Time limitations, together with initial uncertaintie s about the

extent of interaction necessary for the method to be properly imple-

mented, dictated that considerable emphasis be placed on the inter-

action aspect of the system.

program as rapidly as possible, o. c-kcisisz t h z t wniild be very involved

to program would be better lef t to the discretion of the operator ,

especial ly i f it were based on intuitive, ra ther than computable factors .

F r o m the standpoint of a pr ior i uncertainties in implementing the

method, i t was deemed expedient to give control to the operator when-

e v e r a sound algorithm could not be devised for the computer.

F rom the standpoint of trying t o write a

-

I t should be borne in mind, therefore, that the programs

in the remainder of this chapter do not represent highly efficient

programming or interaction systems, but are a rather expedient imple-
mentation aimed at testing the validity of the synthesis method.

descr ibed

Because

-23-

- 24-

-25 -

of this reason, no attempt i s made to explain the fine details of each

program, Instead, a more general description of all the programs

and their interconnections i s given here .

used and r e fe r r ed to in the remainder of this chapter a r e i l lustrated

in Appendix I , and detailed flowcharts of each important program in

CADD- 1 a re given in Appendix 11.

CADD-2 a r e not given, due to time limitations and their resemblance

to CADD- 1 flowcharts. >*

Importunt data s t ructures

Flowcharts for the programs in

B. GENERAL PROGRAM STRUCTURE

1. CADD-I

The general program structure and hierarchy is given in Fig. 3 . 1 .

It should be noted that only the A E D program. a re included in the t r e e -

like s t ructure .

subroutine, MASTER being the main program.

the group of subroutines writ ten in F A P for bit-manipulating purposes

and each subroutine i s called f rom within one o r more of the AED

programs.

par t of the AED programming system, for f ree-format output. The

chief advantage of the OUTPUT package ox e r the standard FORTRAN

format statement i s that prinred ouipu: i an De speciiied character by

cha rac t e r , ra ther than a line a t a tirne, considerably simplifying the

programming of the machine -to-man interaction.

Tnis structure indicates the origin of cal ls on each

The F A P package i s

The OUTPUT package i s a set of routines, provided as

The RWORD package i s .nalogous to the OUTPUT package,

excepi i l l& ;a fu;- c---- g----+ jnniit allowing the operator to type

commands and data in a f o r m most convenient to him.

RWORD package, initially SETEIOW i s called t o es tabl ish the source

of the input data (keyboard, tape, disc fi le, e t c .) and subsequently

whenever i t i s desirable to c lear out the input buffer. Each call on

RWORD gets a new "item" f r o m the input buffer, s to re s the "item"

in BCD f o r m in a temporary location, and re turns a pointer to this

L . A I CIL -A"* ***--

In using the

.,.
Copies of all programs a r e available f rom Paul J . Santos, J r . at
the Electronic Systems Laboratory.

- 2 6 -

location.

buffer according to the character table RT.

the type of each BCD character and fur ther indicates with which other

charac te rs it can be grouped to fo rm an i tem. An i tem i s a sequence

of characters which fit together, with delimiters on either side.

Since one o r more consecutive blanks or a car r iage re turn a r e con-

s idered single del imiters , a satisfactory manner of inputing all i t ems

i s to type them one after the other, separated by blanks, and on con-

secutive l ines i f necessary. All i t ems will be in BCD form, which is

suitable for interpretation of commands and of BCDdata. If numerical

data i s expected, the BCD fo rm is converted to an integer number by

use of the subroutine DECODE.

An "item" i s defined by parsing the left end of the input

This table indicates

The programs MASTER, I N P , INF, MFP, SFP, and DEL, within

which all the interaction takes place, a r e each equipped with a separate

command s t ructure .

and interpret a command from the operator and then branch to the ap-

propriate executive subsection,

fur ther requests for commands and /or data, and when the necessa ry

processing i s completed, control i s re turned t o the main section

which requests another command.

Tnis structure enables the program t o ask for

Within the subsection there may be

Dynamic storage allocation is handled by means of three sub-

routines, FREZ, FREC, and FRET, supplied also a s par t of the AED

system.

f r o m free storage and r e tu rns a pointer to them so that they can be

used to hold newly generated data.

block se t aside from free storage i s made identical t o an already

existing block.

available f r e e storage.

some absolute location in core memory which i s the address of the

f i r s t word of a block.

FREZ se ts aside a block of consecutive computer words

FREC i s similar except that the

FRET re tu rns blocks which a r e no longer needed to

A "pointer'l i s a variable whose value i s

All reference to blocks of f r ee s torage, f o r both storage and r e -

t r ieval Purposes, i s made through pointers to the blocks. This

referencing i s fur ther aided by the AED "bead s t ructure" facil i ty,

which allows a component of a f ree-s torage block, specified by the

position Of the word within the block and the position of the component

within the word, to be declared and used on any pointer.

-27 -

I All data which is referenced f r o m more than one program i s

assigned a location in COMMON storage, in order to eliminate the

need for transmitt ing i t as arguments in subroutine calls.

var iables so used a re a s follows:

The program

1.

2 .

3 .

4.

5.

6.

7.

8.

9 .

10.

STATUS.- indicates the present status of the synthesis with
respect to specification of function to be realized and blocks
to be used.
1 - function specified, but no blocks specified; 2 - function
and some blocks specified;

STATUS takes on four values: 0 - beginning;

3 - decomposition begun,

INVARS - number of input variables.

INPTVARBS - pointer t o block of storage containing variable
name s.

MFN - pushdown stack containing pointer t o cur ren t function
specific ati on.

CBLK - pushdown stack containing pointer to building block
(in t r e e) under consideration.

BBLK - pointer to building block directory.

LIBR - pointer to building block l ib rary .

NIL - pointer which indicates termination, either bottoms of
s tacks o r ends of string-pointer lists.

PSTATE - indicate s the present state of the decomposition::
0 - decomposition has not begun;
function on input X;
30 - decomposition done.

1X - select block to realize
2X - select subfunction on input X;

TRUNK - pointer t o head of block diagram (block that rea l izes
output iuncrionj .

Execution of the program begins with MASTER requesting a

command. MASTER will accept seven commands, six of which cause

it to call subroutines I N P , I N F , M F P , SFP , DEL, and TER, and one

which pr ints out these commands in case the operator has forgotten

them.’:

which c a r r y on the decomposition, INF and DEL serve to support the

synthesis effort, TER ends the execution of the program. MASTER

I N P i s the input subroutine, M F P and S F P a re the subroutines

- *
A typical feature of a l l the command subroutines.

-28-

s e rves a s a junction point for the t ransfer of control f rom one of the

above mentioned subroutine s to another during the course of synthe si s .

2 . CADD-2

The general program structure for CADD-2, similar to that of

CADD-1, i s given in Fig. 3.2. CADD-2 makes use of a large number

MASTER

SFP TER I NF MF P DEL INP

FNFIT cm'

\ TcAvEL GENSYM ' I BGooD

I
R EMOV

I

I
FUNSP

COMPAR

.

TABFX

DTABLE

I
TWIXT

KLUDGE PACKAGE FAP PACKAGE
PLOT t FCVRT
INVIS FUNPK
SETPT
SGNON
LAY OUT
PAC KED

LIN

RWORD PACKAGE

t SETHOW
RWORD

OUTPUT PACKAGE
MESSAG
I NTOUT
OCTOUT
BCQOUT
BCIOUT
BCDOUT
SPACE
ENDLIN

Fig. 3.2 General Program Structure for CADD-2

of utility subroutines not mentioned in the figure which a re supplied

along with all the other AED-0 programming packages.

sion of the CADD-1 structure applies to CADD-2 as well, with the

following exceptions.

The discus-

The RWORD package was reduced in s ize (and flexibility) i n order

to accommodate the needs of CADD-2 without excessive program

- 2 9 - . .
length.

f rom the input buffer.

charac te rs delineated by blanks;

tr ivial and the processing considerably s impler .

The la t ter version of RWORD reads "items" one at a time

An "item" i s any grouping of non-blank

thus the character table is made

In common storage, the older INVARS and INPTVARBS a re in-

corporated into new INVARS, LIBR is deleted, and FNS, which i s a

s t r ing list of all previously realized functions, i s added.

FITLIST a re a lso added to common, the former to indicate the cur ren t

page of the decomposition table displayed on the cathode r a y tube, and

the la t ter to point to the top of a l i s t of "fits" for the current sub-

func ti on,

PAGE and

The I'KLUDGE" package mentioned in Fig. 3 . 2 i s the set of

routines which enables the programming of a visual display.

display i s used as a."fast typewriter' ' in order to reduce interaction

t ime.

and DIAGRM, displaying respectively the up-to-date decomposition

table and the circuit block diagram.

The

The two AED programs that generate displays a r e DTABLE

C. PROGRAM OPERATION

1. CADD-1

a. Input Phase The f i r s t subroutine t o which MASTER t ransfers

is normally I N P . I N P permits the input and editing of both the function

t o be synthesized and the set of building blocks to be used in the

synthesis. The function must be specified before t h e blocks, and may

kc. z 2 k d zf 2~; ' t ime thereafter until the actual decomposition process

begins.

time provided they haven't been used in the decomposition.

Blocks a re specified one at a time and may be edited at any

The function is specified by giving the number and names of the

var iab les and the values of all the t e r m s (rows) in the function truth

table.

nature of the function.

value, and then indicate which rows have different values,

coded in natural binary sequence. Thus, for example, F (W , X , Y , Z) =

WYX t XYZ i s specified by f i rs t setting all rows to ZERO and then

sett ing rows 7 , 14 and 15 to ONE. The other way i s to indicate,

row by row, the values of the function.

The la t ter can be specified in two ways, depending upon the

One way i s to first set all rows to the same

Rows a r e

This information i s first

- 3 0 -

s tored in the unpacked f o r m (UNPACKED F N) shown in Fig, A l , 3 of

Appendix I, and when completed, i t i s converted to the packed form

shown in the same figure.

ca r r i ed out by the use of the FCVRT and FUNPK subroutines, r e -

spectively, Finally, all the information concerning the function is

put into the form of a FUNCT (also shown in Fig. A l . 3) st ructure , and

the pointer i s stacked onto MFN to initialize the state of the decompo-

sition. A FUNCT block i s of length n t 2, where n is the number of

variables on which the function depends.

contains n, the second word contains a pointer to the packed function

description, and the remaining n words contain numbers which

indicate what the var iables a re and in what order of significance they

appear, (the further down in the block, the higher the order) .
find the variable occupying a cer ta in position, the number in that

position is added to the pointer INPTVARBS and the new pointer

becomes the location of the BCD variable name. FUNCT structure

i s used through the decomposition process for storing all information

concerning a particular function (or subfunction).

Packing and unpacking of functions is

The first word of the block

To

A block i s specified by first giving i ts name and number of in-

puts, and then its truth table, in a manner s imilar t o that for function

above. The data structure for the block directory and the associated

block l ib rary i s shown in F i g . A l . 2 (Appendix I) .

block i s specified, the following occurs:

E v e r y time a new

1.

2 .

3 .

4.

5.

Increase BLOCKNUM (total number of blocks) by 1.

Change MIP o r MAP (minimum or maximum number of in-
puts of any block) if new block affects them.

Create a new ent ry at the beginning of both the block
directory and the l ib rary .
function representing the t ruth table for the block.

PDKFN points t o the packed

Create a generator list in the f o r m given by FSPEC i n
Fig. A l . 3 and inser t the pointer i n the FSPEC component
of the block entry.

Find all symmetr ies of inputs, putting this information in
the fo rm of the list SYMLIST (Phase 1) given in Fig. A l . 1
(of Appendix I) . This fo rm i s u s e d since it facil i tates the
incorporation of subsequent symmetric s without affecting
the already existing s t ructure .

~ -31-

. .
6 . Convert the SYMLIST into the form (Phase 2) of the same

figure .
7. Using the new SYMLIST, generate all possible nonredundant

permutations of inputs and classify them in the form of the
t ree- l is t to which PERMUTATIONS of Fig. A l . 1 points.

8. Create the list COMBLIST which uses PERMUTATIONS to
generate all permutations and their associated packed
functions .

9. F o r each permutation, generate the functions associated with
all possible combinations of negations of the inputs, and add
them to the list of functions under the l ibrary entry for the
block i f they a re new functions. Thus, the l ib rary i s sub-
divided according to blocks, and each block points to a list
representing all possible functions realizable with that
block. Furthermore, each element of the l i s t contains an
input code (indicating permutations and negations) and a
pointer to a packed function.

The above steps make use of the following additional subroutines:

FUNSP - creates the generator list.

CRLIB - creates the block l ibrary.

PERGEN - generates PERMUTATIONS in CRLIB.

COMGEN - generates COMBUST in CRLIB;

COMPAR - compares and merges t e r m s for use in FUNSP.

PERMUT - permutes values of inputs within a generator t e r m
for use in generating SYMLIST in CRLIB.

CONVRT - converts t e r m s from one- to two-bit mode for use
by FUNSP.

I N P can be re-entered at any time during the decompo-
sition for the purpose of specifying new blocks or
e a t i n g OLU ullr;s -ski=> k-z net yet been used;
further decomposition will then be based on the new
block directory and l ibrary.

-
.. - _ -

b. Decomposition Phase After the function to be realized and

the set of blocks to be used have been specified within I N P , control is

re turned to MASTER.

synthesis then involves alternate calls on the subroutines M F P and

SFP , with occasional calls on the support routines discussed in

Section C.

The main course of the decomposition and

- 3 2 -

MFP i s called whenever the state of the decomposition process '

requires that a choice of block be made t o realize the cur ren t function

specification.

decomposition of a function using a block selected by M F P .

M F P operate in such a way (using the common variable PSTATE)

that only the proper one can be entered at any given t ime. At the

beginning of the decomposition process , M F P is called to decide on

a block to realize the given (original) function.

to decompose that function into subfunctions, one or more of which

may require a new call on M F P and consequently on SFP.

process continues until S F P real izes all subelements of the block

diagram t r e e , without further cal ls on MFP, at which t ime the

process i s backed up to the level of the output block with no more in-

puts left unspecified.

S F P i s called to handle a l l mat te rs pertaining to the

S F P and

Then, S F P i s called

This

M F P contains commands which allow the user to find out the

present objective (i. e . , the input and block associated with the cur ren t

function), t o find out the theoretically best block to use, and to

specify which block to actually use.

The best block to use is found by applying the subroutine BGOOD

to every block in the directory and noting the one which produces the

highe st value. The program gives BGOOD the number of ONE s and

ZEROS of the function, a s well a s information concerning the gene-

r a to r s for each block; the use r gives it four weights (DCWT,

CONSWT, VARWT, and INPWT) which a re used t o weigh the average

number of DON'TCARES in the generator l is ts , the average number of

constraints in the generator lists, the e lements of that l i s t and the

number of inputs of each block, respectively.

When a decision is finally reached concerning the block to be

used, a new element i s (a) added onto the previous t r ee s t ructure ,

(b) connected to the input entry in the previous block (specified by

PSTATE), (c) given a unique name generated by the subroutine

GENSYM, and (d) filled in with all the proper init ial information,

such a s number of inputs, type of block, and output function. A de-

composition table i s c rea ted and fi l led i n with all init ial r e strictions

and the generator table i s initialized t o contain all genera tors .

Finally, control i s re turned to MASTER with PSTATE set to begin
decomposing the function on input No. 1.

- 5 5 -
. .

At this point it seems appropriate to explain in detail the data

structure needed to contain the growing t r ee of the block diagram

and intermediate decomposition results.

structure i s i l lustrated in Fig. A l . 4 of Appendix I.

consists of n t 2 words, n being the number of inputs of the block.

In the first word, SPEC indicates whether o r not the entire block has

been fully real ized through all of i ts inputs, OUTFN is a pointer to a

FUNCT type structure specifying the function real ized at the output

of the block, INPUTS i s the number of inputs to the block, and NAME

is a pointer to the ECD name of the element (of the form AND004,

ORO21, NORO15, e t c .) . In the second word, TBL i s a pointer to the

decomposition table and BLKTY is a pointer to the building block

directory entry of that type of building block. The third through n t 2

words correspond to the f i r s t through n inputs, and consist of:

SPEC, which indicates i f the subfunction on that input has been

realized; INPFN, which, if the subfunction is realized by another

block, i s a pointer to a FUNCT type structure specifying the sub-

function; INPCODE , which indicates whether the subfunction is

another block (4), a negated variable (3) , a variable (2) , o r a constant

(1); and NEXTBLK, which i s (a) a pointer to a similar element of the

s t ructure i f the subfunction i s realized by a block, (b) a pointer to the

BCD name of a variable i f the subfunction i s a variable or i t s negation,

and (c) 0 o r 1 i f the subfunction is constant ZERO or ONE. An

element block which has been completely specified i s stripped of its

decomposition table, leaving only the s t ructural skeleton in finished

portions of the block diagram. The decomposition table consists of

n t 1 words. In the f i r s t word, GEN i s a pointer to the generator

table, and F N i s a pointer t o an UPKDFN-type structure containing

the function specification for the block. The remaining n words

cor respond to inputs 1 through n and each contain SPEC , which

indicates if the input i s f i l led (note: the input may not be realized yet) ,

and COLL, which i s a pointer t o another UPKDFN-type structure con-

taining the partially specified o r complete subfunction. The generator

table is divided into two par ts t o accomodate the case when there a r e a

l a rge number of ZERO- o r ONE-generators for a certain type of

block, but normally only the f i r s t half, t o which GEN points, i s used.

A typical element in this

The main block

-34- . .

E a c h half i s of the same length as the UPKDFN s t ruc tures , thus

giving a generator specification for each t e r m of the function.

indicates when only one generator remains for a given t e r m of the

function, thus fixing all subfunctions in that row (t e rm) . A 1 in the

leftmost (33rd) bit of GENCODE indicates that the function has a

DON'T CARE in that t e r m , whereas a 1 in any other bit position

(counting f r o m right) of GENCODE means that that particular ZERO

o r ONE generator i s still valid for the function t e r m . Thus, a t e r m

containg ZERO (or ONE) initially contains g 1 ' s in i t s r ightmost g
bit positions, corresponding to the g ZERO (or ONE) generators in

the block specification; fur thermore, initial r e s t r ic t ions on cer ta in

columns (inputs) a re determined from these g genera tors . A s the

decomposition table is gradually filled in, added r e strictions l imit

the choice of genera tors (which are e r a s e d bit-by-bit f rom GENCODE),

until only one generator i s left and the row i s completely filled in.

SPEC

SFP has a large number of commands designed to handle all

aspec ts of decomposition and to provide some aid to the user in making

decisions concerning the decomposition. These commands accomplish

the following tasks : indicate the present objective (which input of

what block) of the decomposition;

sition;

partially specified subfunction;

highest correlation or anticorrelation factor with the main function;

decide which of these to use;

function;

filled;

the var iables of the function in order to bet ter detect some foldings;

and print out the Karnaugh map of any l i b ra ry function.

change the objective of the decompo-

find all possible immediate real izat ions which fit the pre sent

find which one (s) has (have) the

f i l l in an i t em (row) of the present sub-

t rave l on to further decomposition once an input is completely

give the state of convergence of the present subfunction; rotate

The information concerning which input (hence, which subfunction)

is currently decomposed i s contained in PSTATE ;

been completely realized, it cannot be made an object of S F P .

eve r the subfunction being decomposed changes, FITLIST, which is

the string-pointe r l is t indicating the immediately real izable functions,

var iab les , and constants that fit into the pre sent subfunction, i s

e r a s e d . Correlation, anticorrelation, and the decision as to which

Once an input h a s

When-

-35-

immediately realizable subfunction must be chosen, work only with

a non-empty FITLIST. These details, and a number of others , a re

ommitted f rom the present discussion so as not to confuse the main

thoughts.

A typical mode of operation in decomposition, for each new input

is as follows:

1.

2 .

3 .

4.

5.

6 .

Find all fits.

Corre la te o r anticorrelate.

If not sat isf ied,* permute variables and go back to Step 1.
Al l permutations of variables can be achieved.

If nothing fits, go to Step 5 below.

If st i l l not satisfied, go to Step 5. Otherwise, specify which
immediately realizable function is desired.
filled with the selected subfunction and new res t r ic t ions a re
filled in. The decomposition process may be repeated next
for a new input. If no inputs remain to be real ized, and i f
the top of the t r ee has been reached, then the decomposition
i s over;
unrealized inputs.
filled input i s found at some higher level or the process
terminate s .

The input i s then

otherwise, re turn to the higher level and look for
This process is repeated until an un-

Fill in by hand all remaining blank i tems of the subfunction
using previously mentioned technique s.

Fold the subfunction (via the command TRAVEL) wherever
possible and change PSTATE so that when control i s re turned
to MASTER, M F P will be called next.

Subroutines used during the above process and their descriptions

follows :

IPFIT - performs the task ol generdiiug the r;"ITLICT.

SFDCD - performs the task of choosing an immediately

KPR - prints out the Karnaugh map of a function.

GENSYM -

realizable function and carrying out the consequences.

generates a new, unique name for blocks in the t r ee
each t ime it i s called.

evaluates the "goodness" of a block to be used to
real ize a function.

BGOOD -

*-:-- Satisfaction r e s t s with the operator and involves fitting, along with
the fullfilment of cer ta in cr i ter ia of goodness.

- 3 6 -

ANTCR - used by M F P in correlat ion and anticorrelation.

FNFIT - used by IPFIT in finding fits.

Many t imes it is difficult for the use r to be fully aware of all the

detai ls of the process , e:specially af ter a permutation of var iables or

in trying t o f i l l in a subfunction by hand.

wish to "back up" in order t o achieve a better realization.

these cases a re considered as par t s of the support phase for the de-

composition process ra ther than par t s of the decomposition and a r e

handled by INF and DEL, respectively, to be discussed in the next

se ction.

Moreover, the use r may

Both

c . Support Phase , The support subroutines I N F and DEL supply

additional information concerning the var ious aspects of the decompo-

sition and provide a means of re t reat ing f rom a situation which is

considered unsuitable by the operator .

f rom MASTER, whereas DEL can be sucessfully called only when

PSTATE indicates the "subfunction" (2X) mode.

la t ter res t r ic t ion is that there will be no need to "back up" while

trying to decide what type of building block should be used in realizing

the current function.

things: (a) E r a s e the ent i re present e lement of the t r e e , and all the

s t ruc ture dependent on it, putting the state of the decomposition back

to where a call on MFN to re - rea l ize the present function is appropri-

ate, or (b) r e t r ea t yet one s tep fur ther , and place the p rocess in a

subfunction-picking mode with reference t o the t r e e e lement f r o m

which the original element was derived.

unstacked and the ent i re present e lement (including i t s decomposition

table), together with the portions of the t r e e connected t o its inputs,

a r e deleted.

affects the decomposition of all other inputs.

to MASTER with PSTATE indicating that M F P should be called next.

In the second case , both CBLK and MFN a r e unstacked, thus undoing

the e f fec t of a previous "travel" command, PSTATE is set t o a mode

indicating subfunction selection on the par t icu lar input of the higher-

level block which w a s previously connected to the recent ly deleted

element .

In both cases , special provision i s made f o r t rea t ing the p rocess when

it is backed up to the top of the t r ee .

I N F can be called at any time

The reason fo r the

DEL enables the operator to do one of two

In the first case , CBLK is

One input alone cannot be deleted since it normally

Control is then re turned

Control remains in DEL in case fur ther r e t r e a t i s des i red .

- 3 7 -

INF i s a completely passive subroutine in the sense that i t s only

purpose i s printout of information. INF permits the operator to ask

for the following information: Status of decomposition; number of

input variables;

current main function;

members of block l ibrary corresponding to a given building block;

state of decomposition; condition of present t ree element (block);

condition of any element in t ree ; Karnaugh map of any completely

specified input function to present element;

including generators for present element;

(t r ee) ,

the decomposition table, since i t changes every time a new item of a

subfunction i s filled in, or whenever the function i s rotated.

there a re several repeated transfers of control f rom S F P to MASTER

in the course of decomposition of a single function, since when
filling in a subfunction by hand the precise state of the table must be

known,

names of the input variables; Karnaugh map of

number and names of building blocks;

-
decomposition table,

and current block diagram

By far , the most frequently requested information concerns

Normally,

Subroutines used by INF and DEL and their descriptions follow:

NSRCH - searches the entire block diagram t ree for an
element with a given name.
condition of any element in t r e e ,

Used by I N F to give the

DIAGRM - prints out current block diagram. It i s a good illus-
tration of the superiority of the OUTPUT package
over FORMAT statements, since several par ts of
the same line may be printed out by successive
recursive levels of DIAGRM, which i s a recursive
procedure ,

REMOV - aejetes an eieIliciit z i ~ 2 z?! its z~~helemnnts f rom the
t r ee , deleting a lso the decomposition table of the
top element.

When the synthesis process has been completed, the circuit

realization can be obtained via a call on INF to print out the final

block diagram.

2 . CADD-2

a. Input Phase. The input phase of CADD-2 operates much in

the same way a s that of CADD-1, although certain details a r e different.

An alternate method of inputing which saves interaction time i s available

- 3 8 -

f o r both function and block specification.

writing a small program in a standard format which specifies com-

pletely a function or building block, and compiling this program

pr ior t o execution of CADD-2.

cal led for within CADD-2, the particular program which i s des i red

is loaded into core memory.

blocks and function which a r e going to be used frequently (such as

standard logic gates) since the effor t expended in writing the program

is small compared to the effort expended in re-specifying the block o r

function for every execution of CADD-2 in which it i s used.

This method consists of

Then, whenever a specification is

This method i s particularly helpful f o r

A new parameter which has been added to the block specification

This parameter r e s t r i c t s the number of t imes a specific is fan-out.

subfunction can be used within the block diagram by restr ic t ing the

fan-out of the block which rea l izes that subfunction.

The "function specification'' format for CADD-2 differs in

var ious respects f rom its predecessor (see Fig. A l . 5) .
fan-out restrictions, all functions a re kept in canonical fo rm, i. e . ,

with all the var iables in the same order , and with the component

VCODE to indicate the var iables on which the function depends.

the arrangement of the decomposition process of CADD-2, all

rotation, folding, e t c . , i s performed dynamically, s o that the functions

a r e stored in canonical fo rm only, therefore making e a s i e r the testing

f o r fits.

Besides the

Under

All of the programming which generates the block l i b ra ry in

CADD-1 i s absent f rom CADD-2, since no such l i b ra ry is now used.

This approach greatly simplifies the concepts, computing t ime and

storage used in decomposition.

All subfunctions that become fully rea l ized a r e placed in an

ordered l ist t o which FNS points.

fo r "fits", e lements of the F N S list posessing the same variable de-

pendence are checked, hence, it i s now possible to f i t an already

existing function and to permit a fan-out of more than one for blocks

picked from FNS.

When a subfunction i s being t r ea t ed

b. Decomposition Phase . The main differences between CADD- 1

and CADD-2 decomposition l ie i n the subroutine S F P .

unchanged, except to accomodate the new programming details, and to

M F P is virtually

- 3 9 -

speed up the interaction, such as an automatic block selection i f there

is only one block in the directory.

working unit, with need to t ransfer to INF only for displaying the cur ren t

block diagram.

constantly displayed on the CRT, with any occuring changes immedi-

ately updating it.

CADD-2, unchanged in intent, but somewhat changed in content. The

subfunction fitting command has improved interaction abil i t ies and no

longer checks a function l ibrary; but ra ther checks the FNS l is t

(along with constants and variable 3).

improvements in the (anti) correlation, subfunction selection, manual

table filling, traveling, and convergence information command, as

well a s changes in programming due to the new data s t ruc ture .

new commands were added, (a) to give the degrees of f reedom (lack

of dependence on input var iables) of the cu r ren t subfunction, and to

fill in the table in such a way as t o p reserve this independence, and

(b) to turn the pages of the decomposition table on the CRT if the table

is too long to be displayed at once.

S F P for CADD-2 is a self-contained

This i s done by having the cur ren t decomposition table

Most of the CADD- 1 S F P commands remain in

There a r e many interaction t ime

~

TWO

A slightly rev ised technique f o r decomposing a subfunction within

S F P proceeds as follows:

I

1
1. Find all fits, If nothing f i t s , go to Step 4 below.

2 . Corre la te o r ant icorrelate .

3 . If nothing is sat isfactory, go to Step 4. Otherwise, fill in
Return to subfunctions that gave best factor in (2) above.

Step 1, for the next subfunction or go the next higher level.

4. Find independences. If none exist , go to Step 5, otherwise,
make the subfunction independent of one or more of its
var iable s.

5. Fill in any remaining en t r ies in the table a s judiciously as
possible and "travel".

A number of other details of CADD-2 a r e ommitted, since they

only differ slightly f rom CADD-1.

c . Support Phase . The DEL Section of CAD-2 is identical to

that of CADD-1,exrept for details concerning the new data s t ruc ture .

The INF Section i s no longer the same a s that of CADD-1, since it

only need display the cur ren t block d iagram of the combinational
I s y s t e m under synthesis .

CHAPTER IV

RESULTS AND CONCLUSIONS

A. CADD-1

1. Limitations

The CADD- 1 implementation of the generalized synthesis method

given i n Chapter I11 suffers f rom a few limitations. These limitations,

along with methods for eliminating them, a r e discussed in the present

section. A la rge par t of these suggestions a r e incorporated in CADD-2.

One major limitation is that the synthesis process consumes f a r

too much r e a l t ime to be commensurate with pract ical computer-aided

design.

(typewri ter) types out advice and data, and to a sma l l e r extent due to

cer ta in tedious input tasks , such as filling in a long subfunction by

hand.

is that there is too much interaction (overused i n CADD-1 s o as to

allow the operator to intervene i n all cr i t ical tasks), Experimental

use of CADD-1 indicated that much of this f reedom was unnecessary,

and should be eliminated by programming, r a the r than by interaction.

Fu r the rmore , much of the CADD-1 printout was not usually required

f o r the decomposition process .

delay is typewriter speed.

a s ix-var iable function covers a complete page and consumes f i v e

minutes of typing.

The extra t ime is due mostly to waiting while the console

The problem can be t raced to two distinct sources . The first

The second source of unnecessary

F o r example, the decomposition table for

i n o rde r iu Lediicc i r = t z r - c t i cn ammint and t ime, the following

changes w e r e deemed appropriate.

1. P r o g r a m many of the choices now left to the operator .
Experience has shown where this can be done with safety.

Abbreviate much of the printout, and include options to eliminate
printout completely a t the opera tor ' s discretion.

2 .

3 . Include ability to chain many commands.
even faster , a decomposition s t ra tegy which is considered
successful can be included i n the input phase along with the
building blocks.
s t ra tegy under normal conditions, resor t ing to interaction
only when special circumstances a r i s e .

To make the process

The program can then simply follow the

-42-

4. Add features which enable a shor t command to accomplish
the same objectives a s a previously long and tedious input
ope ration.

5. U s e a cathode-ray tube graphical display instead of the
typewriter for unavoidably long outputs, such as decomposi-
tion tables and block diagrams. This feature alone can
cut the real- t ime usage by almost fifty percent.

Another major limitation of the CADD- 1 implementation is that

it is not thorough enough i n checking possible moves.

puts the burden on the operator, who can either go through the

tedious process of permuting var iables , folding, etc. , or simply

make quick but a rb i t r a ry decisions thus probably missing a "better"

solution.

processing himself since no command will give him this information.

Such processing might involve the determination of dependence of a

function on cer ta in var iables , o r the configuration of a n immediately

realizable l ib rary function within a subfunction.

Instead, i t

Many times the operator is forced to do some tedious

Since CADD-1 uses a very sma l l amount of computer t ime (about

fifteen seconds for a four-variable function), some g rea t e r searching

and processing capability can be delegated to the computer.

Most of the above discussion had indicated a probably inc rease in

complexity of the program.

(about two thirds of core memory) , simplifications and use of essent ia l

features should be considered. One possible simplification is to

eliminate the l ib rary functions, since they reduce the decomposition

by one level, i. e . , they eliminate the need for a n ex t ra cal l on M F P

and SFP and the filling i n of var iables .

simplified, and CRLIB and its t r ibutar ies can be eliminated. S F P

would then be f r ee to do a more perceptive analysis of each function

and i t s possible decompositions, no longer having the added task

brought about by l ib rary functions.

Since the CADD-1 program is quite la rge

Thus INP can be considerably

Finally, many improvements of a minor nature can be made in

the implementation, such a s the standardization of packed components ,
variable names, data s t ruc tures , and procedures which va ry slightly

f rom each other and the rewrit ing of many logical subprocesses in

F A P rather than AED.

-43 -
2 . Comparison with other Methods

As mentioned in Section C , Chapter I, a universal basis for

comparison and evaluation of results of the general synthesis method

i s the "brute force" method of converting the synthesis problem to

the form of a two-level c lass ical synthesis realization.

ca ses and their resu l t s a r e shown in Table I .

give s a more optimal solution than the "brute force" technique s. 4

Nine tes t

In each case , CADD-1

Several things should be noted about the resu l t s of Table I . F i r s t ,

the cases in which CADD- 1 i s superior t o other methods of synthesis

a r e those which deal with "unusua?" sets of building blocks, such as

Cases 111 and IV. The reason for this is that these sets of blocks

lend themselves l e s s easi ly to the (Boolean) algebraic manipulations

(which underlie the "brute - force" method) than the more standard

AND-OR, NOR and NAND gates which have a s impler Boolean

algebraic structure. Second, in cases which deal with more con-

ventional blocks, CADD- 1 gains advantage f rom i t s capability to

a r r ive a t more than two-level realizations. Thus, in Case VI, the

superiority of CADD-1 l ies in being able to construct a symmetrical ,

four level OR-AND-OR-AND t r ee , whereas the "brute-force" method

needs two ext ra ANDs in the necessity of maintaining only two levels

in the t r ee ~

CASE V , where the total number of block inputs decides the more

optimal solution.

A similar tlic?ugh le ss symmetr ical situation occurs in

On balance, it can be said that CADD- 1 represents a reasonable

izitizl z t e p tn the solution of the generalized synthesis problem for

combinatorial digital networks.

3 . Effect of Human Ooerator

One final question that must be asked i s : What i s the dependence

of the system upon the operator? O r , s imilar ly , what i s the effect

of the skill of the operator upon the resu l t? There i s no doubt that

operator skill affects the resul ts in a very positive way; this skill,

however, can be acquired after some use of CADD-1 because of the

g re a t adapt ability of the human brain.

~ ~~ ~ ~~ :I:
Where it i s assumed that both complemented and uncomplemented
var iab les a re available.

-44-

B. CADD-2

At the t ime of the writing of this report , the programming system

to implement CADD-2 still contains several program e r r o r s which

inhibit its full operation. Few test c a s e s can be run without using

the a reas of the program which contain these e r r o r s .

a complete l i s t of long examples is not included in this report .

the other hand, real- t ime used for CADD-2 based on a small number

of simple examples shows a five-to-one reduction over the t ime

used by CADD-1 for the same examples.

using the same example as that used in CADD-1, is given in Appendix D.

Consequently

On

A sample run of CADD-2,

-45 -

TABLE 1

Resu l t s of T e s t C a s e s for CADD-1

CASE
NO. O F BUILDING

ARIABLES FUNCTION BLOCKS C
REALIZATIONS
.DD I ' BRUTE -FORCE "

3-INPUT 40 NORs 48 NORs I 6 r (o ,5 ,9 ,
13,14,24,26, NOR
32,33,34,35,
40 ,5 1,60)

XI 5 q o , 5 ,9 3-INPUT 16 NANDs 28 NANDs
13, 14,24,26) NAND

m 4 q o , 3 , 4 3-INPUT 13 MINs 48 MINs
5 ,6 ,8 ,10 , 15) MINORITY

11 ANDs
EXCLUSIVE OR, 5 XORs 11 XORs

IV 4 same 3-INPUT 5 ANDs

3-INPUT
AND

V 4 w(O,1,2, 2 ,3 -INPUT 1 3 -0R9 1 3-OR,
4 ,8) ANDs, 1 3-AND, 1 2-0R9

2,3-1NPUT 2 2-ORs, 4 3-ANDs
O R s 2 2-ANDs

(14 inputs) (17 inputs)

VI 3 q 1 , 2 , 4 , 2-INPUT 3 ORs 3 ORs
AND, 6 ANDs 8 ANDs

2-INPUT
7)

(3 -input
XOR) OR

-

VI1 3 same 3-INPUT 6 NANDs 8 NANDs
NAND

VIlI 3 s ame 2-INPUT 9 NANDs 18 NANDs
NAND

IX 3 r (0 ,2 ,5) 2-INPUT 5 NORs 7 NORs
(see Sample
Run, APPENDICES
C and D)

APPENDIX A

DATA STRUCTURES

Figure

CADD- 1

A l . 1

Al . 2

A l . 3

A1.4 Typical Tree Element

Structures Used i n Library Generation

Building Block Directory and Library

Common Structures Used During Decomposition

CADD-2

Al . 5 CADD-2 Data Structures

Page

48

49

50

51

52

-47 -

-48-

7

t
a
W

-
8
D

0

W
t

a
W

a
n

I’
a
e

t

3 3

7 ?-
I- {: Y CL

I

-50 -

-

c
cu
5
(L
W
I- -

z
LL
P
Y
n

-

f
5

P s
n

- .- c
In
0

al

rn
C

3
-
L

n
8,
J
In

f + u
2
3;

-51-

GENCODE GENCODE I
GENCODE

GENCODE

Fig. Al .4 Typical

GENCODE

GENCODE

Tree Element

-52 -

d

t

v)
z
LL

-

z

m
[L

> z
a
-

z
LL
I

c

I S L

Y
J
m
m 1

J

k
5
0

- z

UI
c .- n
03
N

I

P r o g r a m

M A S T E R

I N P

F U N S P

C R L I B

MI? P

SFP

I P F I T

SFDCD

I N F

D E L

A P P E N D I X B

D E T A I L E D FLOW C H A R T S

page

55

55 thru 57

58

59 and 60

60 and 61

62 thru 65

66
67

68

69

-53-

-54-

CONVENTIONS

n
0
0

ANY SECTION OF THE
PROGRAM CONSIDERED
AS A UNIT i
DECISIONS,
BRANCH POINTS I

OUTPUT a
INPUT

-0

0
PROGRAM ENTRY

0
SUBROUTINE CALL

I NTER-PROGRAM
’ CONNECTION

COMBINED
IN PUT- OUTPUT

RETURN TO
CALLING PROGRAM

- 5 5 -

INITIALIZE VARIABLES
IINCOMMON I

CLEAR INPUT BUFFER I

T

TERMN

no

0-

+ COMMAND

c

BIL DB

COMMAND
L -

-56-

Q
INPTVARBS =
FREZ (INVARS)

I
I

1
I

WHAT ARE

1-
IS SPECIFIED

INPTFN = FREZ
(2 POWER INVARS)

TINPT
(INPTFN, 2 POWER
INVARS-1, TRUE)

6

FINPT (INPTFN,
INVARS)

(INPTFN, 2 POWER

SPECIFICATION
USING INPTFN

4l FRET INPTFN

--I STACK O N T O M F N

SPECIFIED

-57 -

ASK FOR AND STORE

IS NAME IN

BLOCK DIRECTORY

ENTERED SPECIFY
TRUTH TABLE

(2 POWER INS)

ASK FOR
INPUT
MODE

PLACE IN BLOCK

I, INS)

FRET INPTFN

1
STATUS = 2

9
I = ENTRY

BEEN SPECIFIED DO
YOU WISH TO EDIT

1
A

EDIT \

CHANGE NO

HOW TO
SPECIFY
BLOCK

1 I T I N P T (INPTFN, 2 POWER INS-1, TRUE) I
1

PACK SPECIFICATION BACK INTO BLOCK INPTFN

I
ERASE OLD LIBRARY ENTRIES

FUNSP (INPTFN, I, INS)

6

-55-

(FUNSP (INPTFN, BLOCK, INSj)

+
I UNLOAD THE STACK INTO WORKSPACE

GO THROUGH LOO CONVERT WORKSPACE
AS THERE I S IMPROVEMENT TO TWO-BIT MODE

GO THROUGH LOO

GO THROUGH LOOP FOR EVERY
ELEMENT (I) IN WORKSPACE

GO THROUGH LOOP FOR EACH
REMAINING ELEMENT (K)

+
PUT ONTO STACK ANDMARK K

1
I EVER MERGED e
b PUT ONTO STACK

+
INCORPORATE GENERATORS INTO BLOCK ENTRY

I

GET RID OF OLD WORKSPACE, MAKE NEW
ONE, AND UNLOAD STACK ONTO IT

CREATE LIST OF R GENERATORS
I

RETURN 0

-59-

PUT ZERO GENERATORS
IN WORKSPACE

1

PUT O N GENERATORS
IN WOR KSPAC E

G O THROUGH LOOP FOR EACH INPUT

I cMrjPACE FROM WORKSPACE

GO THROUGH LOOP AS LONG AS
A PERMUTED ELEMENT MATCHES
ITSELF OR ANOTHER ELEMENT

I PERMU INPUT I AND K
OF FIRST ELEMENT OF
TEMPSPACE (M)

G O THROUGH LOOP

PUT N O N STACK

ADD SYMMETRY OF I AND K TO
SYMLIST IF NOT THERE ALREADY

FROM STACK OCCURED

EMPTY STACK

1

-60-

1
1

1

1
1
I

BUILD UP NEW VERSION OF SYMLIST

GENERATE ALL PERMUTATIONS OF
INPUTS EXCEPT THOSE THAT ARE
EQUIVALENT BECAUSE OF SYMMETRY

GENERATE LIST OF COMBINATIONS
AND ASSOCIATED PACKED FUNCTIONS

G O THROUGH LOOP FOR ALL COMBINATIONS

GO THROUGH LOOP FOR ALL NEGATIONS

rGENERATE RESULTING FUNCTION I
I I

ADD IT TO LIBRARY 1
RETURN 0

0 R E T U l N

V W

--=--I COMMAND

RETURN +-Q -& COMMANDS

I no

OF CURRENT
CHOICE

-61-

I APPLY BGOOD TO ALL

BE USED I BEST ONE TO DATE

1
NAME OF BEST - APPLY BGOOD TO ALL

BLOCKS IN DIRECTORY
KEEPING TRACK OF THE
BEST ONE TO DATE

GET NAME
OF BLOCK

GENERATE NEW
NAME FOR
ELEMENT

HAS NOW K n I BEEN USED

SET UP INITIALIZE DECOMPOSITION TABLE, WARN IF ANY

TABLE AND SET UP GENERATOR CODES FILLED
- DECOMPOSITION -FILL IN IMMEDIATE RESTRICTIONS, -+ INPUTS ALREADY

CREATE NEW ELEMENT
TO ADD TO TREE STRUCTURE

INT3 ELEMENT

PSTATE = 21
(PICK SUBF UNCTl O N
O N FIRST INPUT 3 F
NEW ELEMENT)

LOAD NEW ENTRY IN PREVIOUS

ONTO CBLK ELEMENT
ELEMENT I ,- ELEMENT = PRESENT -

STATUS = 3 Q 1]TRUNK = PRESENT ELEMENT I

BEEN CHOSEN

RETURN 0

-62-

TATUS 51 RETURN

SUBFUNCTION

t
CLEAR INPUT BUFFER

TYPE
COMMAND 3

FINIS RETURN

I no

A - -
11- OF CURRENT

SUB-
FUNCTION

ITPIC

SFDCD

no c

- 6 3 -

W H A T I N P U T T O
BE W O R K E D ON - ERASE FITLIST

0 IPFIT (FITLIST) b

t
IGO T H R O U G H L O O P I
F 3 R A L L ITEMS
IN FIT LIST

I t
KEEP TRACK OF BEST
I T E M AND ITS V A L U E

SET N E G A T = TRUE
IF N E G A T I O N O F
VARIABLE O R
C O N S T A N T Z E R O

O F B L O C K , VARIABLE
O R C O N S T A N T W I IH
F U W C T I O N

c BEST= K

V A L U E

- 64-

SET UP NEW FUNCTlOh

STACK INTO MFN
ROTATE SPECIFICATION AND - = , ON THIS VARIABLE

INPUT FILLED

PREPARE INPUT ENTRY FOR
-c ATTACHMENT OF FURTHER

TREE STRUCTURE

I no

COUNT NUMBER
OF ONES, ZEROS,

IN FUNCTION
AND DON'T CARES

I

COUNT NUMBER
OF ONES, ZEROS,

OF SUBFUNCTION FUhCTlON - AND CARES

ROWS FILLED

CALL TABFX TO I N S E R T
VALUE AND FILL IN
FURTHER RESTRICTIOKS
IN ROW

GO THROUGH L3OP
FOR ALL VARIABLES

FOLD J 1

w -

FUNCTION

-65-

GET TYPE AND
AMOUNTOF --c

,
ROTATE ROTATE CHANGE
DECOMPOSITION -D GENERATOR FUNCTION
TABLE TABLE SPECIFICATION -

SEARCH
BLOCK
DIRECTORY

SEARCH
BLOCK
DIRECTORY

+-I GET LIBRARY

SET UP FUNCTION
SPECIFICATION

MAP OF
LIBRARY
FUNCTION

-6h-

IPFIT (FITLIST)

A N Y RESTRICTIONS NO FITLIST RETURN
GENERATED

GO THROUGH LOOP
FOR EVERY VARIABLE

NEGATION OF
VARIABLE FITS
VARIABLE NAME

I

HOW FAR CAN
SUBFUNCTION
BE FOLDED

ENOUGH INPUTS

G 3 THROUGH LOOP
FOR EVERY BLOCK THAT
I S BIG ENOUGH

G 3 THROUGH LOOP
FOR ALL LIBRARY
ENTRIES OF BLOCK

UNFOLD LIBRARY
FUNCTION AS FAR

FUNCTION FITS
FITLIST BLOCK NAME A N D
(WITH FN.) FUNCTION CODE

c c

RETURN 0

-67-

QFDCD (FITLIST, DONE))

DONE = FALSE *
RETURN

CONSTANT

OR BLDCK

no

FILL IN FUNCTION
INTO DEC3MPOSITION WHICH VARIABLE
TABLE USING TABFX

0 BLOCK AND ATTACH

(OR ITS NEGATION)
0 INPUT IN INTO DECOMPOSITION
REE STRUCTURE

FILL IN CONSTANT IN
REMAINDER OF COLUMN
IN DECOMPOSITION TABLE
USING TABFX F 3 R EVERY

ATTACH CONSTANT
TO INPUT IN
TREE STRUCTURE

0 RETURN

I c

I

-CURRENT BLOCK
COMPLETELY

UNSTACK MFN AND CBLK ERASE DECOMPOSITION SPECIFIED
ATTENTION SHIFTED TO - TABLE AND GENERATOR *
PREVIOUS LEVEL TABLE

-68 -

(7 RETURN
CLEAR INPUT BUFFER

DIAGRAM USING

INPUT VARIABLES

no

FIND ELEMENT
USING NSRCH

1
NAMEAND -
INPUTS TO

yes CLRRENT BLOCK

NUMBER AND
NAMES OF
BUILDING

BLOCKS

yer - - -
I 1..

GENERATOR LIST Yes
AND KARNAUGH -
MAP OF BLOCK

NAME OF *
BLOCK

1 I I
1 no

.- -.
BLOCK

I no
4 I

-69-

UNSTACK MFN

STATUS =1 RETURN

RIGHT TIME

+l CLEAR INPUT BUFFER

4 BS = TRUE

I no
DELETE TREE FROM
CBLK ON DOWN

I

b STATUS = 2

A
RETURN u

APPENDIX C

SAMPLE RUN FOR CADD-1

The following sample run is the basis for Case IX in Table 1.

Upper case characters indicate output, lower case input. In function

specifications, "2" stands for DON'T CARE.

-71-

- 7 2 -

r s y n t hs
w
TYPE. input
INPUTS WILL NOW BE ACCEPTED
TYPE, o u t f n
SPEC I F I CAT I ON OF OUTPlJT FUNCTl ON
HOW MANY INPUT VARIABLES
TYPE. 3
WHAT ARE THE VARIABLE NAMES

TYPE. a1 pha b e t a gamma
PROCEED WITH FUNCTION S P E C I F I C A T I O N
THE FUNCTION I S S P E C I F I E D BY I N D I C A T I N G THE VALUE
(0 = ZERO, 1 = ONE, 2 = DON'T CARE 1
FOR EACH COMBINATLON OF INPUT VARIABLE VALUES. A G I V E N SET
OF INPUT VARIARLE VALUES I S TRANSFORMED INTO A 'TERM' BY
MU LT I PLY I NG
GAE.If1A BY 1
BETA BY 2
ALPHA BY 4
AND ADDING
TYPE 'TERM' FOR S P E C I A L INPUT MODE, OR ' F U L L ' OTHERWISE
TYPE. term
TYPE I N I T I A L VALUE OF A L L ELEMENTS
TYPE. 0
SPECIFY VALUES OF I N D I V I D U A L TERMS AS FOLLOWS
V l T l T 2 T 3 . . . * V 2 T l T 2 . . . * *
TYPE. 1 0 2 5 * *
OUTPUT FUNCTION ENTERED
TYPE. b i l d b
WHAT I S THE NAME OF THE B U I L D I N G BLOCK
NO MORE THAN THREE CHARACTERS PLEASE
TYPE. n o r
HOW MANY INPUTS
TYPE. 2
2 I PNOR BE I NG ENTERED
SPECIFY FUNCTION. ONLY ZEROS AND ONES ALLOWED
THE FUNCTION I S S P E C I F I E D BY I N D I C A T I N G THE VALUE
FOR EACH COMBINATION OF INPUT VARIABLE VALUES, A G I V E N S E T
OF INPUT VARIABLE VALUES I S TRANSFORMED INTO A 'TERM' BY
M U L T I P L Y I N G
I N P U T 1 BY 1
INPUT2 BY 2

AND ADDING
TYPE 'TERM' FOR S P E C I A L INPUT MODE, OR ' F U L L ' OTHERWISE
TYPE. t e r m
TYPE I N I T I A L VALUE OF A L L ELEMENTS
TYPE. 0
S P E C I F Y VALUES OF I N D I V I D U A L TERMS AS FOLLOWS

TYPE, 1 0 * *
B U I L D I N G BLOCK S P E C I F I E D AND ENTERED I N L IBRARY
TYPE. f i n i s i n f o r

NO MORE THAN S I X CHARACTERS PER NAME PLEASE

V l T l T 2 T 3 . 0 * V 2 T l T 2 . * *

- 7 3 -

INPUTS W I L L NO LONGER BE ACCEPTED. RETURN TO TOP LEVEL
I NFORMATI ON NOW AVA I LABLE

TYPE. mainf
THE M A I N FUNCTION I S

BETA GAMMA
00 0 1 11 1 0

0 0 1 0 0 1

0 1 0 1 0 0
A L PHA

TYPE. f i n i s mfp ic
INFORMATION NO LONGER AVAILABLE. RETURN TO TOP LEVEL
READY TO P I C K M A I N FUNCTION
TYPE. d e c i d
WHAT I S THE TYPE OF BLOCK TO BE USED
TYPE. 2ipnor
H A I N FUNCTION BLOCK HAS BEEN CHOSEN. RETURN TO TOP LEVEL
TYPE. i n f o r
INFORMATION NOW A V A l LABLE

THE DECOMPOSITION TABLE FOR THE PRESENT BLOCK I S
ALPHA BETA GAMMA

TYPE. Wktbl

TERM VALUE I P 1 I P 2 CHOICES
000 1 0 0 1
0 0 1 0 1 - 2
010 1 0 0 1
011 0 1 - 2
1 0 0 0 1 - 2
1 0 1 1 0 0 1
1 1 0 0 1 - 2
111 0 1 - 2

TYPE. f i n i s s f p i c
INFORMATION NO LONGER AVAILABLE. RETURN TO TOP LEVEL
READY TO P I C K SUBFUNCTION
TYPE. i n f i t
CONSTANT ZERO
F I T T I N G I S L I M I T E D TO B U I L D I N G BLUCKS i i T n 6 C2 XCl",E :?:PL'TI
2 I PNOR CODE 1 INPUT2 = NOT GAMMA I N P U T 1 = NOT BETA
TYPE. i n a n t
21PNOR CODE 1 ANTICORRELATION FACTOR = 2
TYPE. sfdcd
I S THE SUBFUNCTION A CONST, VARB, OR BLOCK
TYPE. b l o c k
WHICH BLOCK
TYPE. Zipnor
CQ.E %W.S%R
T Y P E . 1
ORJECT I S NOW INPUT 2 OF BLOCK NOR000
TYPE. I n f l t
F I T T I N G I S L I M I T E D TO B U I L D I N G BLOCKS W I T H 3 OR MORE INPUTS
NO BLOCK HAS S U F F I C I E N T INPUTS
TYPE. f i n i s fnfor
SUBFUNCTION CHOICE DISABLED. RETURN TO TOP LEVEL
INFORMATiON NUW HvniLrrvt.L

TYPE , wk t b l
-.a. I A ~ B A I I A D I

- 74-

THE DEC0MPOSITION TABLE FOR THE PRESENT BLOCK I S
ALPHA BETA GAMMA

TERM VALUE I P l I P 2 CHOICES
00 0 1 0 0 1
0 0 1 0 0 1 1
0 1 0 1 0 0 1
0 1 1 0 1 1 - 2
1 0 0 0 0 1 1
1 0 1 1 0 0 1
1 1 0 0 0 1 1
111 0 1 1 - 2

TYPE. f i n i s s f p i c

READY TO P I C K SUBFUNCTION

IJHICH ROW

WHAT VALUE

INFORMATION NO LONGER AVAILABLE, RETURN TO TOP LEVEL

TYPE. i t p i c

TYPE. 3

TYPE. 2
TYPE. i t p i c
WHICH ROW

NHAT VALUE

INPUT 2 F I L L E D
TYPE. t r a v l m f p i c

READY TO P I C K M A I N FUNCTION

WHAT I S THE TYPE OF BLOCK TO BE USED
TYPE, 2 i p o r
21POR HAS NOT BEEN S P E C I F I E D
TYPE. d e c i d
WHAT IS THE TYPE OF BLOCK TO BE USED
TYPE. Zipnor

TYPE. i n f o r
INFORMATION NOW A V A I L A B L E

THE DECOMPOSITION TABLE FOR THE PRESENT BLOCK I S
GAMMA ALPHA

TYPE, 7

TYPE. 2

TRAVELING. RETURN TO TOP LEVEL

TYPE. d e c i d

M A I N FUNCTION BLOCK HAS BEEN CHOSEN, RETURN TO TOP LEVEL

TYPE, w k t b l

TERM VALUE I P 1 I P 2 CHOICES
00 0 1 - 2
0 1 1 0 0 1
10 1 0 0 1
11 0 1 - 2

TYPE, f i n i s s f p i c
INFORMATION NO LONGER A V A I L A B L E , RETURN TO TOP LEVEL
READY TO P I C K SUBFUNCTION
TYPE. I n f i t
CONSTANT ZERO
F I T T I N G I S L I M I T E D TO B U I L D I N G BLOCKS WITH 0 OR MORE INPUTS
2 IPNOR CODE 1 INPUT2 - NOT ALPHA I N P U T 1 = NOT GAMMA
2 IPNOR CODE 4 INPUT2 ALPHA I N P U T 1 - GAMMA
TYPE, sfdcd

-75-

IS THE SUBFUNCTION A CONST, VARB, OR BLOCK
TYPE . b 1 ock
IJHICH BLOCK
TYPE. Zipnor
CODE NUMGE R
TYPE. 1
OBJECT I S NOW INPUT 2 OF BLOCK NOR002
TYPE. i n f i t
F I T T I N G I S L I M I T E D TO BUILDING BLOCKS WITH 2 OR MORE INPUTS
21PtlOR CODE 4 INPUT2 = ALPHA I N P U T 1 - GAIYt4A
TYPE. s f d c d
I S THE SUBFUNCTION A CONST, VARB, OR BLOCK
TYPE . b 1 oc k
WHICH BLOCK
TYPE. Zipnor
CODE NUMBER
TYPE. 4
NOR002 HAS NOW BEEN COMPLETELY SPEC I F I ED
NOR000 HAS NOW BEEN COMPLETELY SPEC1 F I ED

TYPE. i n f o r
INFORMATION NOW A V A I L A B L E
TYPE, t r e p r

DECOMPOSITION DONE, RETURN TO TOP LEVEL

NOR000
I P l - - - - NOR001

I P l - - - - NOT BETA
I P2---- NOT GAMMA

I P2---- NOR002
I P l - - - - NOROO3

I P l - - - - NOT GAMMA
I P2---- NOT ALPHA

TYPE, f i n i s termn
INFORMATION NO LONGER AVAILABLE, RETURN TO TOP LEVEL
R

APPENDIX D

SAMPLE RUN FOR CADD-2

The following sample run covers the same problem as i n Appendix C.
All displays, with the exception of a few that were redundant a r e given

a t the point i n the text where they occurred.

-7 7-

-78-

r s y n t h 2
W
EXECUTION.
/*!ASTER COMMAND i nput
INPUT COtMMAND o u t f n

NUMBER AND NAMES OF VARIABLES 3 a b c
MAJOR VALUE AND MINORITY ELEMENTS 0 0 2 5 *
I NPIJT COMMAND b i 1 d b
BLOCK NAME t w o - n o r
B L O C K PROGRAM nor I p2

PJEED NORIP2
G 1 VE LOAD I NG COMMANDS
TYPE. USE n o r i p 2

INPUT COMMAND f i n i s m f p i c s f p i c
I NPUT P I C K COMMAND

FUNCT I ON PR0GRAI.I *

i t p i c 1 1 3 7 * 2 4 6 * * *
IFJPUT P I C K COWIAND

i ndep
SYMMETRIC ABOUT VARIABLES 1

I N P U T 1 F I L L E D
I N P U T 2 F I L L E D
I N P U T P I C K COMMAND

V A R I A B L E NUMBER 1 *

- 79-

t r a v l m f p i c s f p i c
INPlJT P I C K COMMAND

i n f i t
CONSTANT ZERO (1)
V A R I A B L E S NOT C (2) NOT B (3)
I NPlJT P I CK COMMAND i n a n t

I NPUT P I C K COMMAND s f d c d
F I T NUMBER 2
I N P U T 2 F I L L E D
OBJECT I S NOW INPUT 2 OF BLOCK TWO-NOR1
I N P l l T P I CK CUMMANG

(1) = - 3 (2) = 1 (3) = 1

- 80-

i n f i t s f d c d
VARIABLES NOT B (1)
F I T NUMBER 1
TWO-NOR1 HAS NOW BEEN COMPLETELY SPEC I F I ED
OBJECT I S NOW I N P U T 2 OF BLOCK TWO-NOR0
I N P U T P I CK COMMAND

t r a v l rnfp ic s f p i c
I NPUT P I CK COMMAND

i n f i t
CONSTANT Z E R O (1)
I NPUT P I C K COMMAND i t p i c 1 1 0 * 2 3 * * *
I N P U T 1 F I L L E D
I N P U T 2 F I L L E D
I NPUT P I C K COMIIAND

t r a v l rn fp ic s f p i c
I N PUT P I C K COfYlf4AND

-81-

i n f i t
CONSTANT ZERO (1)
VARIABLES C (2) A (3)
I NPlJT P I CK COMMAND i n a n t s f d c d

F I T NUMBER 2
INPUT 2 F I L L E D
OBJECT IS NOW INPlJT 2 OF BLOCK TWO-NOR3
I NPUT P I CK COMMAND

(1) = -2 (2) = -0 (3) = 0

i n f i t s f d c d 1 t r a v l m f p i c s f p i c
VARIABLES A (1)
TWO-NOR3 HAS NOW BEEN COMPLETELY SPEC1 F I ED
OBJECT I S NOlJ INPUT 2 OF BLOCK TWO-NOR2
INPUT P I C K COMMAND i n f i t s fdcd
CCYSTANT Z E R O (1)
VARIABLES NOT C (2) NOT A (3 1
F I T NUMBER 2 i n f i t srdcd 1
INPUT 2 F I L L E D
OBJECT IS NOiJ INPlJT 2 OF BLOCK TWO-NOR4
VARIABLES NOT A (1)
TWO-NOR4 HAS NOW BEEN COMPLETELY SPEC1 F I ED
TWO-NOR2 HAS NOW BEEN COMPLETELY SPEC I F I ED
TWO-FIORO HAS NOW BEEN COMPLETELY SPEC I F I ED
DECOMPOS I T I ON DONE
MASTER COMMAND termn
K

BIBLIOGRAPHY

1. Class Notes for MIT Course 6.252 Digital Systems Engineering.

2. a) Quine, W.V., "A Way to Simplify Truth Functions:
The American Mathematical Monthly, Vol. 62, November
1955, pp. 627-631.

b) McCluskey, E. J. , J r . , "Minimization of Boolean Functions,
The Bell System Technical Journal, November 1956, p. 1417.

3. R o s s , D. T . , AED-0 Programming Manual, Prel iminary Releases
1 through 4, AED Flashes 1 through 15, and Internal Memorandum,
1964- 6 5.

4. For t r an I1 Assembly Program (F A P) , IBM F o r m C28-6235-2, 1963

-8 3-

